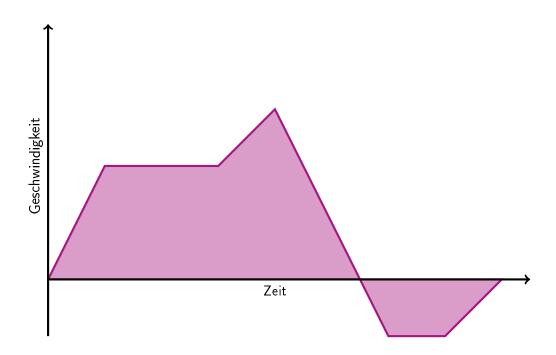


mathematikeanj1-bpe13.1-integralsherleitung

Exposition

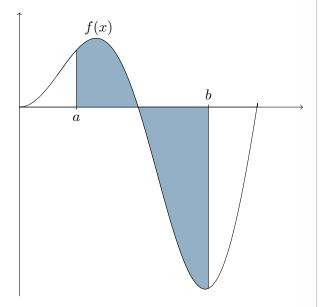
Üblerege, welche Bedeutung der Flächeninhalt zwischen dem Schaubild und der Zeitachse hat, wenn das Schaubild die Geschwindigkeit einer Schneckennudel abhängig von der Zeit modelliert.





Komplikation

Wir definieren das Integral als den orientierten Flächeninhalt einer Funktion f in einem Intervall [a;b] mit $a < b \in \mathbf{R}$:

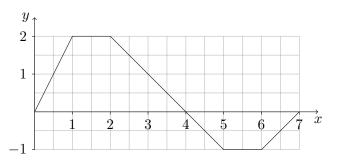


Das Integral hat die folgenden Eigenschaften:

- Intervalladitivität:
- Linearität:
- Vertauschen der Integrationsgrenzen:

Gegeben ist jeweils das Schaubild K der Funktion f. Gib jeweils den Wert des Integrales an.

$$\int_0^4 f(x) \cdot dx \qquad \int_4^7 f(x) \cdot dx \qquad \int_0^7 f(x) \cdot dx \qquad \int_2^{4,5} f(x) \cdot dx$$



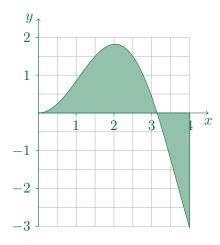
$$\int_0^4 f(x) \cdot dx = 5 \qquad \int_4^7 f(x) \cdot dx = 2 \qquad \int_0^7 f(x) \cdot dx = 2 \qquad \int_2^{4,5} f(x) \cdot dx = 2$$

3 Fehler

Beispiel 2

Ermittle zeichnerisch näherungsweise den Wert des Integrals.

$$\int_0^4 \sin(x) \cdot x \cdot dx$$



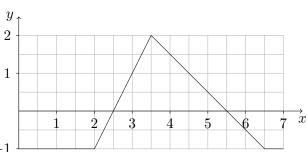
$$\int_0^4 \sin(x) \cdot x \cdot dx = A \approx 6 \text{ FE}$$

1 Fehler

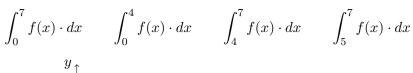
Gegeben ist jeweils das Schaubild K der Funktion f. Gib jeweils den Wert des Integrales an.

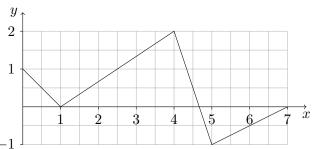
1.

$$\int_0^2 f(x) \cdot dx \qquad \int_2^4 f(x) \cdot dx \qquad \int_4^7 f(x) \cdot dx \qquad \int_0^7 f(x) \cdot dx$$

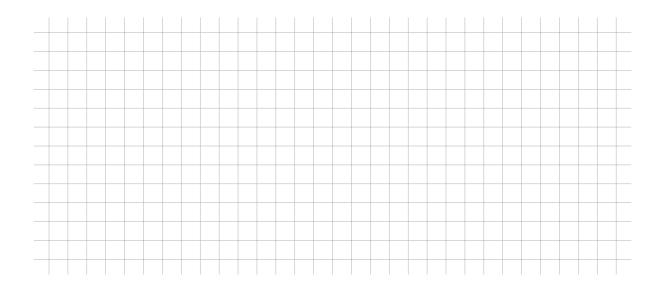


2.



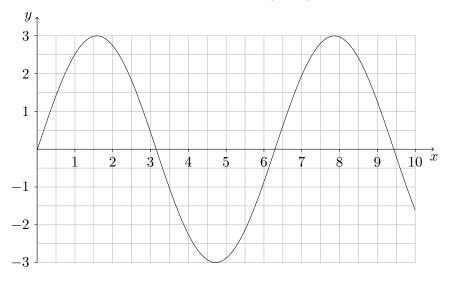


AFB I

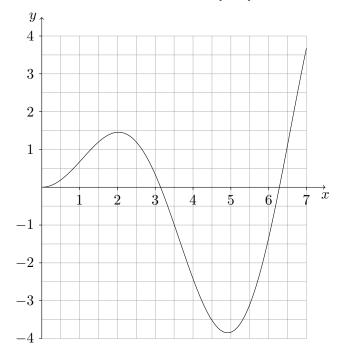


Gegeben ist jeweils das Schaubild K der Funktion f.

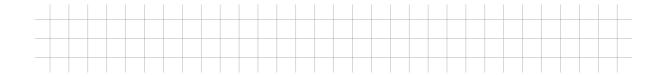
1. Gib näherungsweise Wert des Integrales im Intervall $[0;\ 10]$ an.



2. Gib näherungsweise Wert des Integrales im Intervall $[0;\ 7]$ an.

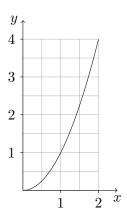


AFB I

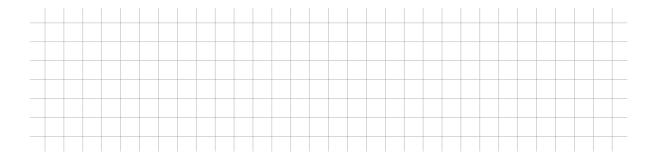


Gegeben ist das Schaubild K der Funktion f mit $f(x)=x^2$. Erläutere, wie man mit der Hilfe von K und ohne das Berechnen von Stammfunktionen näherungsweise den Wert des Rechenausdruckes R bestimmen kann, wenn gilt:

$$R = \int_0^2 3 \cdot (x+2)^2 \cdot dx - \int_0^2 (4 \cdot (x+1)) \cdot dx$$



AFB II; AFB III

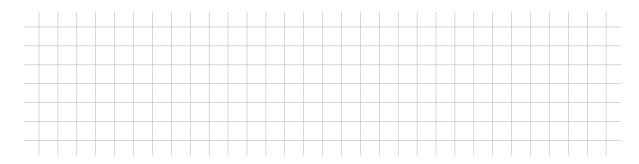


Aufgabe 4

Erläutere, wie man den Wert der Integrale für $a \in \mathbb{R}^+$, bestimmen kann und welche Rolle die Punktspiegelung dabei spielt.

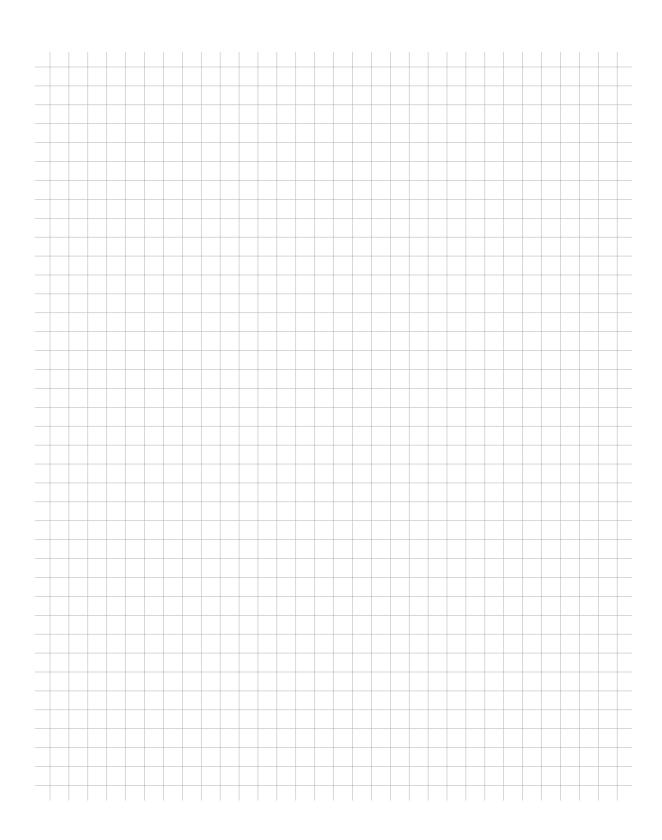
$$\int_{-2 \cdot a}^{2 \cdot a} \sin(3 \cdot x) \cdot dx; \qquad \int_{-a}^{a} x \cdot (x^2 - 1) \cdot dx$$

AFB II; AFB III



Erläutere, wie die Riemannsche Integralsumme die Symbolschreibweise des Integrales motiviert.

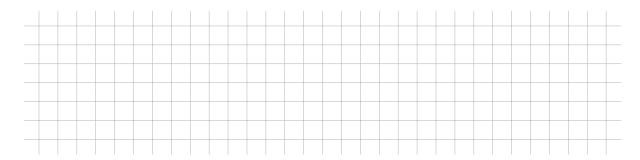
AFB IV



Ermittle zeichnerisch näherungsweise den Wert des Integrales.

$$\int_0^5 x^2 \cdot dx$$

AFB I

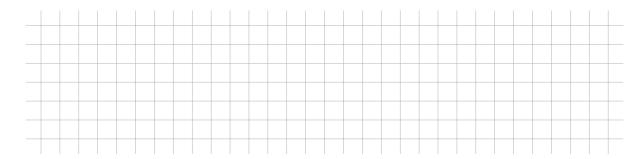


Aufgabe 7

Skizziere das Schaubild einer Funktion f, so dass gilt:

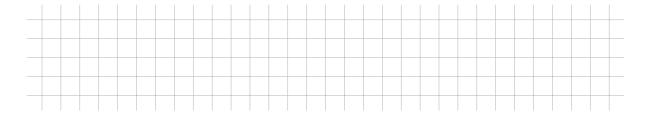
$$\int_0^{\pi} f(x) \cdot dx = 2; \qquad \int_{\pi}^2 f(x) \cdot dx = 0$$

AFB II

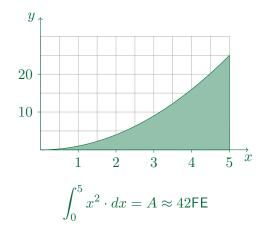


Aufgabe 8

Erläutere, warum der Riemansche Grenzwertbegriff bei der Funktion $f(x)=x^{-1}$ nicht ausreicht, um beliebige Flächen zwischen f und der x-Achse zu bestimmen.

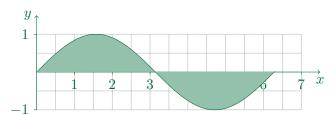


Skizze des Schaubildes:



Lösung 7

Skizze des Schaubildes:



Lösung 8

Durch die senkrechte Asymptote bei x=0 können die Integralsgrenzen nicht bei 0 sein, da dort f nicht definiert ist.